New insights into the uptake/release of FTFSI− anions into graphite by means of in situ powder X-ray diffraction

2016 
Abstract The redox-amphoteric character of graphite enables its utilization as intercalation host for various types of cations and anions to form either donor-type or acceptor-type graphite intercalation compounds (GICs), respectively. While the donor-type GIC LiC 6 is commonly used in the field of lithium ion batteries, acceptor-type GICs were suggested for application in dual-ion cells. In this contribution, the electrochemical intercalation/de-intercalation of fluorosulfonyl-(trifluoromethanesulfonyl) imide (FTFSI − ) anions into graphite was studied for dual-ion cells during a cyclic voltammetry experiment using in situ powder X-ray diffraction. For the GICs, a series of most dominant stages could be assigned and the periodic repeat distance as well as the FTFSI − gallery height/gallery expansion were determined. The obtained dominant stage numbers of the formed GICs were correlated to cell voltage ranges. Upon charge, a transition of the different stages was observed, while upon discharge stage 1 was still preserved for a broad voltage range. These novel findings indicate different mechanisms for the uptake and release of the anions.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    13
    References
    37
    Citations
    NaN
    KQI
    []