Structural characterization and electrochemical lithium insertion properties of carbon nanotubes prepared by the catalytic decomposition of methane

2003 
Carbon nanotubes (CNTs) were synthesized by the catalytic decomposition of methane at 773, 873 and 973 K. Structures of these carbon nanotubes were characterized by TEM, HRTEM, XRD and Raman spectra, respectively. The results showed that with the increase of preparation temperature, the d002 value of the CNTs decreased, while the L a values and the degree of crystallinity of the samples increased. Electrochemical lithium insertion properties of the CNTs used as positive electrodes in CNTs/Li cells were also investigated. The first charge capacities of CNTs/Li cells were 290, 254 and 202 mAh/g for samples produced at 773, 873 and 973 K, respectively. The sample from 773 K showed a larger charge capacity, which is attributed to the accommodation of lithium at microcavities, at edges of graphitic layers and at the surface of single graphitic layers. Its potential hysteresis during Li insertion and deinsertion processes may be related to the interstitial carbon atoms.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    10
    Citations
    NaN
    KQI
    []