Robustness of Neuromorphic Computing with RRAM-based Crossbars and Optical Neural Networks.

2021 
RRAM-based crossbars and optical neural networks are attractive platforms to accelerate neuromorphic computing. However, both accelerators suffer from hardware uncertainties such as process variations. These uncertainty issues left unaddressed, the inference accuracy of these computing platforms can degrade significantly. In this paper, a statistical training method where weights under process variations and noise are modeled as statistical random variables is presented. To incorporate these statistical weights into training, the computations in neural networks are modified accordingly. For optical neural networks, we modify the cost function during software training to reduce the effects of process variations and thermal imbalance. In addition, the residual effects of process variations are extracted and calibrated in hardware test, and thermal variations on devices are also compensated in advance. Simulation results demonstrate that the inference accuracy can be improved significantly under hardware uncertainties for both platforms.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    26
    References
    0
    Citations
    NaN
    KQI
    []