Low-Cost Multispectral Sensor Array for Determining Leaf Nitrogen Status

2020 
A crop’s health can be determined by its leaf nutrient status; more precisely, leaf nitrogen (N) level, is a critical indicator that carries a lot of worthwhile nutrient information for classifying the plant’s health. However, the existing non-invasive techniques are expensive and bulky. The aim of this study is to develop a low-cost, quick-read multi-spectral sensor array to predict N level in leaves non-invasively. The proposed sensor module has been developed using two reflectance-based multi-spectral sensors (visible and near-infrared (NIR)). In addition, the proposed device can capture the reflectance data at 12 different wavelengths (six for each sensor). We conducted the experiment on canola leaves in a controlled greenhouse environment as well as in the field. In the greenhouse experiment, spectral data were collected from 87 leaves of 24 canola plants, subjected to varying levels of N fertilization. Later, 42 canola cultivars were subjected to low and high nitrogen levels in the field experiment. The k-nearest neighbors (KNN) algorithm was employed to model the reflectance data. The trained model shows an average accuracy of 88.4% on the test set for the greenhouse experiment and 79.2% for the field experiment. Overall, the result concludes that the proposed cost-effective sensing system can be viable in determining leaf nitrogen status.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    44
    References
    3
    Citations
    NaN
    KQI
    []