Fractional Choquard-Kirchhoff problems with critical nonlinearity and Hardy potential

2021 
In this paper, we investigate the following fractional p-Kirchhoff type problem $$\begin{aligned} \left\{ \begin{array}{ll} \left( a+b[u]_{s,p}^{p(\theta -1)}\right) (-\Delta )^s_pu = \Big ({\mathcal {I}}_\mu *|u|^q\Big )|u|^{q-2}u+\frac{|u|^{p_{\alpha }^*-2}u}{|x|^\alpha },\ u>0, &{}\text{ in }\ \Omega ,\\ u=0, \ &{} \mathrm{in}\ {\mathbb {R}}^N\backslash \Omega , \end{array} \right. \end{aligned}$$ where $$[u]_{s,p}^{p}=\displaystyle \iint _{{\mathbb {R}}^{2N}} \frac{|u(x) - u(y)|^{p}}{|x - y|^{N+ps}}\, dxdy$$ , $$\Omega $$ is a bounded smooth domain of $${\mathbb {R}}^N$$ containing 0 with Lipschitz boundary, $$(-\Delta )_{p}^{s}$$ denotes the fractional p-Laplacian, $$0\le \alpha1$$ , $$a\ge 0$$ , $$b>0$$ , $$1<\theta \le p_\alpha ^*/ p$$ , $$p_\alpha ^*=\frac{(N-\alpha )p}{N-ps}$$ is the fractional critical Hardy-Sobolev exponent, $${\mathcal {I}}_\mu (x)=|x|^{-\mu }$$ is the Riesz potential of order $$\mu \in (0,\min \{N,2ps\})$$ , $$q\in (1, Np/(N-ps))$$ satisfies some restrictions. By the concentration-compactness principle and mountain pass theorem, we obtain the existence of a positive weak solution for the above problem as q satisfies suitable ranges.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    41
    References
    0
    Citations
    NaN
    KQI
    []