Technical Determinants of On-Water Rowing Performance

2020 
Purpose: Research establishing relationships between measures of rowing technique and velocity is limited. In this study, measures of technique and their effect on rowing velocity were investigated. Methods: Ten male singles, eight female singles, three male pairs, and six female pairs participated. Data from each stroke for forty-seven 2,000 m races were collected using Peach PowerLine and OptimEye S5 GPS units. General linear mixed modeling established modifying effects on velocity of two within-crew SD of predictor variables for each boat class, with subsequent adjustment for power, and for power and stroke rate in separate analyses. Twenty-two predictor variables were analyzed, including measures of boat velocity, gate force, and gate angle. Results were interpreted using superiority and inferiority testing with a smallest important change in velocity of 0.3%. Results: Substantial relationships with velocity were found between most variables assessed before adjustment for power, and for power and stroke rate. Effect magnitudes were reduced for most variables after adjustment for power and further reduced after adjustment for stroke rate and power, with precision becoming inadequate in many effects. The greatest modifying effects were found for stroke rate, mean and peak force, and power output before adjustment, and for catch angle after adjustment for stroke rate and power. Substantial between-crew differences in effects were evident for most predictors in some boat classes before adjustment and in some predictors and some boat classes after adjustment for stroke rate and power. Conclusion: The results presented reveal variables associated with improvements in rowing performance and can be used to guide technical analysis and feedback by practitioners. Higher stroke rates and greater catch angles should be targeted to improve rowing performance, and rower force development for the improvement of power output. Relationships between rowing technique and velocity can be crew-dependent and are best assessed on an individual basis for some variables.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    16
    References
    1
    Citations
    NaN
    KQI
    []