Temporal dynamics of sequential motor activation in a dual-prime paradigm: Insights from conditional accuracy and hazard functions.

2020 
In response priming experiments, a participant has to respond as quickly and as accurately as possible to a target stimulus preceded by a prime. The prime and the target can either be mapped to the same response (consistent trial) or to different responses (inconsistent trial). Here, we investigate the effects of two sequential primes (each one either consistent or inconsistent) followed by one target in a response priming experiment. We employ discrete-time hazard functions of response occurrence and conditional accuracy functions to explore the temporal dynamics of sequential motor activation. In two experiments (small-N design, 12 participants, 100 trials per cell and subject), we find that (1) the earliest responses are controlled exclusively by the first prime if primes are presented in quick succession, (2) intermediate responses reflect competition between primes, with the second prime increasingly dominating the response as its time of onset is moved forward, and (3) only the slowest responses are clearly controlled by the target. The current study provides evidence that sequential primes meet strict criteria for sequential response activation. Moreover, it suggests that primes can influence responses out of a memory buffer when they are presented so early that participants are forced to delay their responses.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    59
    References
    3
    Citations
    NaN
    KQI
    []