Trends and Spatial Characteristics of PM 1 Aerosol Chemical Composition over the Greater Athens Area, Using High Temporal Resolution Measurements

2020 
Airborne sub-micrometer particles (PM1) have been documented to exert adverse impacts on human health, including respiratory and cardiovascular disease and premature mortality. The Greater Athens Area (GAA), characterized by topographic and meteorological conditions which frequently obstruct the effective dispersion of ambient pollutants, hosts approximately 40% of Greece’s population. It can be considered an “ambient laboratory” for studying PM1 pollution events, given the intensity and diversity of submicron aerosol sources and processing. Fine aerosol chemical composition is continuously monitored at the National Observatory of Athens Air Monitoring Station in Thissio, an urban background site in Central Athens. Furthermore, two intensive monthly campaigns were held at a central site in Piraeus, where Greece’s busiest passenger port is located, during both winter (December 2018–January 2019) and summer (June–July 2019) periods. Organic aerosol (OA), sulfate, nitrate, ammonium, and chloride were measured using an aerosol chemical speciation monitor (ACSM), while black carbon (BC and source-specific components) was measured using a multi-wavelength aethalometer (AE-33). The variability of concentrations at different temporal scales was examined, revealing differences for primary aerosol components, depending on site type and location, and related to local sources and transport processes. Biomass burning for domestic heating was found to be a key factor during wintertime, leading to uniform OA and BC levels at both sites, while the local sources in Piraeus (traffic, port activity) lead to substantially increased levels during the summer. Secondary sources were found to affect both sites in a relatively homogeneous manner.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    23
    References
    0
    Citations
    NaN
    KQI
    []