Adaptive Pipeline Architecture for an Asynchronous Embedded Processor

2007 
This paper presented an adaptive pipeline architecture for a high-performance and low-power asynchronous processor. The proposed pipeline architecture employed a stage-skipping and a stage-combining scheme. The stage-skipping scheme can skip the operation of a bubble stage that is not used pipeline stage in an instruction execution. In the stage-combining scheme, two consecutive stages can be joined to form one stage if the latter stage is empty. The proposed pipeline architecture could reduce the processing time and power consumption. The proposed architecture supports multi-processing in the EX stage that executes parallel 4 instructions. We designed an asynchronous microprocessor to estimate the efficiency of the proposed pipeline architecture that was synthesized to a gate level design using a CMOS standard cell library. We evaluated the performance of the target processor using SPEC2000 benchmark programs. The proposed architecture showed about 2.3 times higher speed than the asynchronous counterpart, AMULET3i. As a result, the proposed pipeline schemes and architecture can be used for asynchronous high-speed processor design
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    1
    Citations
    NaN
    KQI
    []