Mixed monolayer and mixed micelle formation in binary mixture of surfactants—Systems for trioxyethylenated dodecyl sulfonate and some polyoxyethylenated fatty alcohol ether nonionic surfactants

2002 
The interaction and synergism of some polyoxyethylenated fatty alcohol ether (POE) nonionic surfactants (C12E2, C12E3, C10E5, C10E7, where Cx indicates number of carbon atoms in the chain and Ey indicates number of oxyethylene glycol ethers) with trioxyethylenated dodecyl sulfonate (C12E3S) in mixed monolayer formation at the surface and in mixed micelle formation in aqueous solutions were studied at 25 and 40°C by calculating interaction parameters (βα, βM) from surface tension-concentration data by use of Rosen's equations based on the nonideal solution theory. All the systems investigated adapt reasonably well to the nonideal model, with negative values of βσ and βM (where M means micelle and σ refers to the air-liquid interface) indicating a favorable interaction between the mixed surfactants. Either at a monolayer or in a mixed micelle, the attractive interaction becomes stronger when the alkyl chain in the POE surfactant is longer, i.e., when the POE becomes more hydrophobic. The interaction increases in the order C10E7micelle, but it decreases in a mixed monolayer. Synergism in mixed micelle formation exists for C12E3S/C10E n mixtures when X1 M , the mole fraction of POE in a mixed micelle, is ≈0.4–0.8, whereas synergism does not occur in the systems of C12E3S/C12E m due to the large difference between CMC1 and CMC2, i.e., large |In(C 1 M /C 2 M )| value (where CMC=critical micelle concentration). The degree of synergism in mixed micelle formation is temperature independent and is 0.23, 0.18, and close to zero for C10E5/C12E3S, C10E7/C12E3S, and C12E m (m=2,3)/C12E3S systems, respectively. Synergism in surface tension reduction effectiveness occurs in C12E3S/C12E2 and C12E3S/C12E3 systems. The mole fractions of POE in the solution phase are 0.302 and 0.333 for the two mixtures at the point of maximum synergism.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    15
    References
    8
    Citations
    NaN
    KQI
    []