A Bifunctional Hexa-filamentous Microfibril Multi-metallic Foam: An Unconventional High-Performance Electrode for Total Water Splitting Under Industrial Operation Conditions

2021 
Cellulose in various forms possesses high strength, low density, and high aspect ratio with a three-dimensional open network structure, making them ideal candidates as current collectors in energy conversion application. Herein, a surface rough-cellulose-based bamboo fiber with unique and naturally-convoluted morphology is adopted for the fabrication of catalytically active cobalt substrates for water splitting. For the efficient evolution of hydrogen and oxygen, cobalt-based bimetallic alloys, namely, cobalt–molybdenum and cobalt–iron, were electrodeposited. The proposed system possesses a highly macro-porous network of hexa-filament micro-fibrils that demonstrate exceptional catalytic activities. In quantitative terms, the anodic and cathodic current density of 50 and −10 mA cm−2 at respective overpotentials (η) of 250 and 46 mV with a low activation energy (Ea) of 28 kJ mol−1 were achieved. Moreover, when operated under harsh industrial standards of 5 M KOH@343 K, electrodes demonstrate excellent water electrolyzing catalytic activities (η-100(HER) = 147 mV; η100(OER) = 209 mV). This work, thus, promises a new strategy for designing electrode systems that are highly efficient as well as economical as the substrate was obtained from a ubiquitous earth-friendly material for energy conversion application.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    72
    References
    5
    Citations
    NaN
    KQI
    []