Arachidonic acid mobilization and phosphoinositide turnover by the terminal complement complex, C5b-9, in rat oligodendrocyte x C6 glioma cell hybrids.

1989 
Previously, we have shown that rat oligodendrocytes release phospholipid and generate arachidonic acid (AA) and leukotriene B4 in response to sublytic C5b-9 formation. In the present study, we investigated the biochemical pathways by which C5b-9 generates AA from clone ROC-1, a fusion product of rat oligodendrocytes and C6 glioma. Cells were incubated for 24 h in the presence of [3H]AA or [3H]myoinositol. They were then sensitized with antibody against hybrid cell stroma and treated for 1 h with C9-depleted human serum (C9D-HS) or C9D-HS reconstituted with C9. Alternatively, cells were treated with C8,C9D-HS or C8,C9D-HS reconstituted with C8 or C8 plus C9 for 1 h. Qualitative and quantitative analysis of the released [3H]AA and [3H]myoinositol radiolabeled products were performed by thin layer chromatography/autoradiography and anion exchange chromatography, respectively. The major [3H]AA radiolabeled products after C5b-9 stimulation comigrated with intact phospholipid and AA standards, and the major [3H]myoinositol radiolabeled product was inositol-1-phosphate. Treatment of cells with phospholipase A2 inhibitors, mepacrine and bromophenacyl bromide, abolished AA release by C5b-9. In the absence of extracellular Ca2+, C5b-9 also failed to induce the release of AA. Interestingly, 1-(5-isoquinolinsulfonyl)-2-methylpiperazine (H-7), a potent inhibitor of protein kinases, inhibited AA release by C5b-9, whereas AA release stimulated by the calcium ionophore A23187 was not blocked by H-7. The results suggest that AA generation by C5b-9 from the ROC-1 clone involves activation of Ca2+-dependent phospholipase A2 which is regulated by protein kinase-dependent mechanisms.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    40
    Citations
    NaN
    KQI
    []