Regio‐ and Stereospecific Prenylation of Flavonoids by Sophora flavescens Prenyltransferase

2013 
Prenylflavonoids are valuable natural products that are widely distributed in plants. They often possess divergent biological properties, including phytoestrogenic, anti-bacterial, anti-tumor, and anti-diabetic activities. The reaction catalyzed by prenyltransferases represents a Friedel–Crafts alkylation of the flavonoid skeleton in the biosynthesis of natural prenylflavonoids and often contributes to the structural diversity and biological activity of these compounds. However, only a few plant flavonoid prenyltransferases have been identified thus far, and these prenyltransferases exhibit strict substrate specificity and low catalytic efficiency. In this article, a flavonoid prenyltransferase from Sophora flavescens, SfFPT, has been identified that displays high catalytic efficiency with high regiospecificity acting on C-8 of structurally different types of flavonoid (i.e., flavanone, flavone, flavanonol, and dihydrochalcone, etc.). Furthermore, SfPFT exhibits strict stereospecificity for levorotatory flavanones to produce (2S)-prenylflavanones. This study is the first to demonstrate the substrate promiscuity and stereospecificity of a plant flavonoid prenyltransferase in vitro. Given its substrate promiscuity and high catalytic efficiency, SfFPT can be used as an environmentally friendly and efficient biological catalyst for the regio- and stereospecific prenylation of flavonoids to produce bioactive compounds for potential therapeutic applications.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    37
    References
    35
    Citations
    NaN
    KQI
    []