Essential dynamics of the cold denaturation: Pressure and temperature effects in yeast frataxin

2017 
The cold denaturation of globular proteins is a process that can be caused by increasing pressure or decreasing the temperature. Currently, the action mechanism of this process has not been clearly understood, raising an interesting debate on the matter. We have studied the process of cold denaturation using Molecular Dynamics simulations of the frataxin system Yfh1, which has a dynamic experimental characterization of unfolding at low and high temperatures. The frataxin model here studied allows a comparative analysis using experimental data. Furthermore, we monitored the cold denaturation process of frataxin and also investigated the effect under the high-pressure regime. For a better understanding of the dynamics and structural properties of the cold denaturation, we also analyzed the MD trajectories using Essentials Dynamic. The results indicate that changes in the structure of water by the effect of pressure and low temperatures destabilize the hydrophobic interaction modifying the solvation and the system volume leading to protein denaturation. This article is protected by copyright. All rights reserved.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    37
    References
    11
    Citations
    NaN
    KQI
    []