Nanoscale thermoreflectance with 10mK temperature resolution using stochastic resonance

2005 
We present 2D temperature measurements with 250nm spatial and 10mK temperature resolution using thermoreflectance microscopy. We measure the temperature-induced reflectivity change with an accuracy better than /spl Delta/R/R=2/spl middot/10/sup -6/ using a 12bit CCD, which has a quantization limitation of /spl Delta/R/R=2.5/spl middot/10/sup -4/. The dynamic range is thus expanded from 72dB to 114dB, equivalent to more than 18 effective bits. We quantitatively explain this dramatic improvement using the concept of stochastic resonance. In addition, we optimize the thermoreflectance calibration coefficient K/spl equiv/R/sup -1//spl middot/ R/T by matching the illumination wavelength to a combination of the thermoreflectance coefficient spectrum R/T and the reflectivity spectrum R. For gold illuminated with a 467nm LED, we obtain the extraordinarily large value /spl kappa/ =3.3/spl middot/10/sup -4/ K/sup -1/. This calibration coefficient yields a temperature resolution of better than 10mK.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    17
    References
    23
    Citations
    NaN
    KQI
    []