Effect of bond coat creep and oxidation on TBC integrity

1985 
The potential of thermal barrier coatings (TBCs) on high-pressure turbine (HPT) nozzles and blades is limited at present by the inability to quantitatively predict TBC life for these components. The goal is to isolate the major TBC failure mechanisms, which is part of the larger program aimed at developing TBC life prediction models. Based on the results of experiments to isolate TBC failure mechanisms, the effects of bond coat oxidation and bond coat creep on TBC integrity is discussed. In bond coat oxidation experiments, Rene prime 80 specimens coated with a NiCrAlY/ZrO2-8 percent Y2O3 TBC received isothermal pre-exposures at 2000 F in static argon, static air, or received no pre-exposure. The effects of oxidation due to the pre-exposures were determined by thermal cycle tests in both static air and static argon at 2000 F. To study the effect of bond coat creep on TBS behavior, four bond coats with different creep properties were evaluated by thermal cycle tests in air at 2000 F. The test results, the relative importance of these two failure mechanisms, and how their effects may be quantified will also be discussed.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []