Real-Time Volumetric Phase Monitoring: Advancing Chemical Analysis by Countercurrent Separation

2015 
Countercurrent separation (CCS) utilizes the differential partitioning behavior of analytes between two immiscible liquid phases. We introduce the first platform (“CherryOne”) capable of real-time monitoring, metering, and control of the dynamic liquid–liquid CCS process. Automated phase monitoring and volumetrics are made possible with an array of sensors, including the new permittivity-based phase metering apparatus (PMA). Volumetric data for each liquid phase are converted into a dynamic real-time display of stationary phase retention (Sf) and eluent partition coefficients (K), which represent critical parameters of CCS reproducibility. When coupled with the elution–extrusion operational mode (EECCC), automated Sf and K determination empowers untargeted and targeted applications ranging from metabolomic analysis to preparative purifications.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    22
    References
    8
    Citations
    NaN
    KQI
    []