Building blocks for spikes signals processing
2010
Neuromorphic engineers study models and implementations of systems that mimic neurons behavior in the brain. Neuro-inspired systems commonly use spikes to represent information. This representation has several advantages: its robustness to noise thanks to repetition, its continuous and analog information representation using digital pulses, its capacity of pre-processing during transmission time, …, Furthermore, spikes is an efficient way, found by nature, to codify, transmit and process information. In this paper we propose, design, and analyze neuro-inspired building blocks that can perform spike-based analog filters used in signal processing. We present a VHDL implementation for FPGA. Presented building blocks take advantages of the spike rate coded representation to perform a massively parallel processing without complex hardware units, like floating point arithmetic units, or a large memory. Those low requirements of hardware allow the integration of a high number of blocks inside a FPGA, allowing to process fully in parallel several spikes coded signals.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
17
References
24
Citations
NaN
KQI