Synthesis and characterization of nanocomposite Fe3O4/SiO2 core–shell abrasives for high-efficiency ultrasound-assisted magneto-rheological polishing of sapphire
2021
Abstract A functional Fe3O4/SiO2 core–shell abrasive was synthesized via hydrolysis of tetraethyl orthosilicate. A silica shell was successfully coated on a Fe3O4 core, resulting in a core-shell particle with an average diameter of 140 nm. The prepared core–shell abrasives was utilized for ultrasound-assisted magneto-rheological polishing (UAMP) of sapphire substrate. The experimental results showed that the Fe3O4/SiO2 core–shell abrasives exhibited a remarkable polishing performance for the sapphire material, resulting in smooth and detect-free surfaces with a high material removal rate (MRR) compared to mixed abrasives (Fe3O4 and SiO2) and pure Fe3O4 particles. The application of ultrasonic vibration to the sapphire wafer further improved the MRR, which was approximately 3.4 times higher than that of traditional magneto-rheological polishing. The largest MRR (1.974 μm/h) and comparatively low surface roughness (0.442 nm) of the polished sapphire wafer were achieved by UAMP with the Fe3O4/SiO2 core–shell abrasives. The polishing mechanism of the sapphire wafer is discussed in terms of chemical reactions and mechanical polishing.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
47
References
0
Citations
NaN
KQI