ROS/KRAS/AMPK Signaling Contributes to Gemcitabine-Induced Stem-like Cell Properties in Pancreatic Cancer
2019
Abstract Poor prognosis in pancreatic cancer (PanCa) is partially due to chemoresistance to gemcitabine (GEM). Glucose metabolism has been revealed to contribute to the therapeutic resistance and pluripotent state of PanCa cells. However, few studies have focused on the effects of GEM on cancer cell metabolism, stemness of tumor cells, and molecular mechanisms that critically influence PanCa treatment. We demonstrated that GEM treatment induces metabolic reprogramming, reducing mitochondrial oxidation and upregulating aerobic glycolysis, and promotes stemlike behaviors in cancer cells. Inhibiting aerobic glycolysis suppresses cancer cell stemness and strengthens GEM’s cytotoxicity. GEM-induced metabolic reprogramming is KRAS-dependent, as knockdown of KRAS reverses the metabolic shift. GEM-induced metabolic reprogramming also activates AMP-activated protein kinase (AMPK), which promotes glycolytic flux and cancer stemness. In addition, GEM-induced reactive oxygen species (ROS) activate the KRAS/AMPK pathway. This effect was validated by introducing exogenous hydrogen peroxide (H2O2). Taken together, these findings reveal a counterproductive GEM effect during PanCa treatment. Regulating cellular redox, targeting KRAS/AMPK signaling, or reversing metabolic reprogramming might be effective approaches to eliminate cancer stem cells (CSCs) and enhance chemosensitivity to GEM to improve the prognosis of PanCa patients.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
53
References
22
Citations
NaN
KQI