Redox-mediated mechanisms and biological responses of copper-catalyzed reduction of the nitrite ion in vitro.

2013 
Abstract During ischemia nitrite may be converted into nitric oxide (NO) by reaction with heme-carrying proteins or thiol-containing enzymes. NO acts as a regulator of vasodilation and protector against oxidative stress-induced tissue injuries. As a result of ischemia-induced oxidative stress, hypoxia and/or acidosis bivalent copper ions (Cu 2+ ) can dissociate from their physiological carrier proteins. Reduced by the body’s own antioxidants, the resultant Cu 1+ might represent an effective reductant of nitrite. Here we have evaluated in vitro copper-dissociation from copper/BSA (bovine serum albumin) complexes under ischemic conditions. Furthermore, using physiological concentrations, we have characterized the capacity of antioxidants and bivalent copper ions to serve as Cu 1+ -agitated catalytic sites for nitrite reduction and also the biological responses of this mechanism in vitro . We found that as a consequence of an acidic milieu and/or oxidative stress the copper-binding capacity of serum albumin strongly declined, leading to significant dissociation of copper ions into the ambient solution. At physiologically relevant pH-values Cu 2+ ions in combination with physiologically available copper reductants (i.e., ascorbate, glutathione, Fe 2+ ) significantly enhanced nitrite reduction and subsequent non-enzymatic NO generation under hypoxic but also normoxic conditions. Our data demonstrate for the first time that upon ischemic conditions carrier protein-dissociated copper ions combined with appropriate reductants may serve as Cu 1+ -driven catalytic sites for nitrite reduction, leading to the formation of biologically relevant NO formation. Thus, in addition to the action of heme proteins, copper-catalyzed non-enzymatic NO formation from nitrite might represent a further physiologically relevant vasodilating and NO-dependent protective principle to ischemic stress.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    54
    References
    4
    Citations
    NaN
    KQI
    []