High- responsivity, self-driven photodetectors based on monolayer WS₂/GaAs heterojunction

2020 
Constructing two-dimensional (2D) layered materials with traditional three-dimensional (3D) semiconductors into complex heterostructures has opened a new platform for the development of optoelectronic devices. Herein, large-area high performance self-driven photodetectors based on monolayer WS2/GaAs heterostructures were successfully fabricated with a wide response spectrum band ranging from the ultraviolet to near-infrared region. The detector exhibits an overall high performance, including high photoresponsivity of 65.58 A/W at 365 nm and 28.50 A/W at 880 nm, low noise equivalent power of 1.97×10−15  W/Hz1/2, high detectivity of 4.47×1012  Jones, and fast response speed of 30/10 ms. This work suggests that the WS2/GaAs heterostructure is promising in future novel optoelectronic device applications, and also provides a low-cost, easy-to-process method for the preparation of 2D/3D heterojunction-based devices.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    46
    References
    5
    Citations
    NaN
    KQI
    []