Current Perspective on Synthesis, Properties, and Application of Graphitic Carbon Nitride Related-Compounds

2020 
Currently, graphitic carbon nitride (g-C3N4)-based materials are the centre of attention in chemistry and materials science because of their unique as well as fascinating properties, which are strongly desired for many technological applications. g-C3N4 is lamellar and composed of two-dimensional layers of carbon atoms naturally arranged in hexagonal networks. g-C3N4 is, therefore, analogous to graphene, but has nitrogen atoms bound through covalent bonds (sp2). This results in a stable, porous, heat-resistant polymeric semiconductor that is optically active under visible-light irradiation (and thus has excellent photocatalytic characteristics) as well as economically sustainable. The recent discovery of this new member of the graphene family is a crucial breakthrough, as there are only a few bi-dimensional organic solids. Hence, this chapter summarizes the current progress in the understanding of the synthesis and fundamental properties of g-C3N4-related materials.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    111
    References
    2
    Citations
    NaN
    KQI
    []