Construction of carbon-doped supramolecule-based g-C3N4/TiO2 composites for removal of diclofenac and carbamazepine: A comparative study of operating parameters, mechanisms, degradation pathways

2019 
Abstract An eco-friendly 2D heterojunction photocatalyst composites (BCCNT) consisting of carbon-doped supramolecule-based g-C 3 N 4 (BCCN) layers and TiO 2 nanoparticles has been fabricated via an in-situ method. Based on the SEM and XPS results affirmed that the coaction of doped carbon and supramolecule precursors lead to the different morphology of pure g-C 3 N 4 , C-doped g-C 3 N 4 have improved the photodegradation diclofenac (DCF) and carbamazepine (CBZ). And the degradation efficiencies of DCF and CBZ could reach 98.92% and 99.77%, which were separately corresponded to 30 min (min) and 6 h (h) of LED lamp illumination. Additionally, the effects of catalysis dosage, solution pH, natural organic matter (NOM), inorganic anions (Cl − , SO 4 2− , NO 3 − ) and different water matrices were deeply investigated. The scavenger experiments demonstrated that •O 2 − , h + were main active species under visible irradiation. Furthermore, the photodegradation pathways of DCF and CBZ were detected by high-resolution mass spectrometry (HRMS) instruments and three-dimensional excitation-emission matrix fluorescence spectra (3D EEMs). Eventually, the possible photocatalytic mechanisms of BCCNT were proposed.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    60
    References
    52
    Citations
    NaN
    KQI
    []