Alanine Adsorption and Thermal Condensation at the Interface of Fumed Silica Nanoparticles: A Solid-State NMR Investigation

2015 
Investigating the interface between biomolecules and nanoparticles has attracted considerable attention in recent years since it has great significance in numerous fields including nanotechnology, biomineralization, cancer therapy, and origin of life. In this paper, we present a thorough solid-state NMR study on alanine adsorption and thermal condensation on fumed silica nanoparticles. The structure and dynamics at the interface between alanine and fumed silica nanoparticles were probed with a combination of 1H, 13C, and 15N one- and two-dimensional (2D) magic angle spinning (MAS) solid-state NMR methods at different alanine surface coverages and hydration levels. It is illustrated at high surface coverages both crystalline and adsorbed states of alanine exist in the samples while only adsorbed alanine is observed at low surface coverage (approximately a monolayer). At high hydration levels, the adsorbed alanine exhibits enhanced mobility, and both the carboxyl and amine group interact with mobile water m...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    54
    References
    26
    Citations
    NaN
    KQI
    []