Different responses of the Rayleigh–Taylor type and resistive drift wave instabilities to the velocity shear

2020 
The effects of velocity shear on the unstable modes driven by the effective gravity (Rayleigh–Taylor and interchange) and resistive drift wave instabilities for inhomogeneous equilibrium fluid/plasma density are analyzed for the localized eigenmode problems. It is shown that the effect of the velocity shear drastically depends on the type of instability. Whereas the velocity shear can significantly suppress both Rayleigh–Taylor and interchange instabilities, it has only a weak impact on the growth rate of the resistive drift wave. This is directly related to the physical nature of these instabilities. For the Rayleigh–Taylor and interchange instabilities, the shear flow tilts the eddies of the stream functions, while for the resistive drift wave instability the shear flow simply shifts the eddies in the radial direction with no tilting. However, for a large velocity shear, the eigenmode solutions for resistive drift waves cease to exist.The effects of velocity shear on the unstable modes driven by the effective gravity (Rayleigh–Taylor and interchange) and resistive drift wave instabilities for inhomogeneous equilibrium fluid/plasma density are analyzed for the localized eigenmode problems. It is shown that the effect of the velocity shear drastically depends on the type of instability. Whereas the velocity shear can significantly suppress both Rayleigh–Taylor and interchange instabilities, it has only a weak impact on the growth rate of the resistive drift wave. This is directly related to the physical nature of these instabilities. For the Rayleigh–Taylor and interchange instabilities, the shear flow tilts the eddies of the stream functions, while for the resistive drift wave instability the shear flow simply shifts the eddies in the radial direction with no tilting. However, for a large velocity shear, the eigenmode solutions for resistive drift waves cease to exist.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    24
    References
    4
    Citations
    NaN
    KQI
    []