Experimental and theoretical ventricular electrograms and their relation to electrophysiological gradients in the adult rat heart

2009 
The electrical activity of adult mouse and rat hearts has been analyzed extensively, often as a prerequisite for genetic engineering studies or for the development of rodent models of human diseases. Some aspects of the initiation and conduction of the cardiac action potential in rodents closely resemble those in large mammals. However, rodents have a much higher heart rate and their ventricular action potential is triangular and very short. As a consequence, an interpretation of the electrocardiogram in the mouse and rat remains difficult and controversial. In this study, optical mapping techniques have been applied to an in vitro left ventricular adult rat preparation to obtain patterns of conduction and action potential duration measurements from the epicardial surface. This information has been combined with previously published mathematical models of the rat ventricular myocyte to develop a bidomain model for action potential propagation and electrogram formation in the rat left ventricle. Important insights into the basis for the repolarization waveform in the ventricular electrogram of the adult rat have been obtained. Notably, our model demonstrated that the biphasic shape of the rat ventricular repolarization wave can be explained in terms of the transmural and apex-to-base gradients in action potential duration that exist in the rat left ventricle.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    69
    References
    17
    Citations
    NaN
    KQI
    []