Evaluation of the OsTIR1 and AtAFB2 AID systems for chromatin protein degradation in mammalian cells

2021 
Auxin-inducible degron (AID) system is a promising tool for dynamic protein degradation. In mammalian cells, this approach has become indispensable to study fundamental molecular functions, such as replication, chromatin dynamics or transcription, that are otherwise difficult to dissect. We present evaluation of the two prominent AID systems based on OsTIR1 and AtAFB2 auxin receptor F-box proteins (AFBs). We analyzed degradation dynamics of cohesin/condensin complexes subunits in mouse embryonic stem cells (mRad21, mSMC2, mCapH, mCapH2) and human haploid HAP1 line (hRad21, hSMC2). Double antibiotic selection helped to achieve high homozygous AID targeting efficiency for all genes, ranging from 11 to 77%. We found that the main challenge for successful protein degradation is obtaining cell clones with high and stable AFB expression levels due to mosaic expression of AFBs, which also tends to decline with passages in the absence of constant puromycin selection, even at the AAVS1 safe-harbor locus. Comparing two AFBs, we found that OsTIR1 system showed weak dynamics of protein degradation. At the same time, AtAFB2 approach was very efficient even in random integration. Other factors such as degradation dynamics and low basal depletion were also in favor of AtAFB2 system. Our main conclusion is that repeated addition of puromycin to culture medium prevents AtAFB2 silencing and restores auxin sensitivity, facilitating robust protein degradation. We hope that our report will be useful for researchers that plan to establish AID method in their lab.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    24
    References
    0
    Citations
    NaN
    KQI
    []