Astroglial DJ-1 over-expression up-regulates proteins involved in redox regulation and is neuroprotective in vivo

2018 
Abstract DJ-1, a Parkinson's disease-associated protein, is strongly up-regulated in reactive astrocytes in Parkinson's disease. This is proposed to represent a neuronal protective response, although the mechanism has not yet been identified. We have generated a transgenic zebrafish line with increased astroglial DJ-1 expression driven by regulatory elements from the zebrafish GFAP gene. Larvae from this transgenic line are protected from oxidative stress-induced injuries as caused by MPP + , a mitochondrial complex I inhibitor shown to induce dopaminergic cells death. In a global label-free proteomics analysis of wild type and transgenic larvae exposed to MPP + , 3418 proteins were identified, in which 366 proteins were differentially regulated. In particular, we identified enzymes belonging to primary metabolism to be among proteins affected by MPP + in wild type animals, but not affected in the transgenic line. Moreover, by performing protein profiling on isolated astrocytes we showed that an increase in astrocytic DJ-1 expression up-regulated a large group of proteins associated with redox regulation, inflammation and mitochondrial respiration. The majority of these proteins have also been shown to be regulated by Nrf2. These findings provide a mechanistic insight into the protective role of astroglial up-regulation of DJ-1 and show that our transgenic zebrafish line with astrocytic DJ-1 over-expression can serve as a useful animal model to understand astrocyte-regulated neuroprotection associated with oxidative stress-related neurodegenerative disease.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    79
    References
    20
    Citations
    NaN
    KQI
    []