Simulation of municipal solid waste gasification for syngas production in fixed bed reactors

2010 
This study proposes a model of syngas production from municipal solid waste (MSW) gasification with air in fixed bed reactors. The model (using Aspen plus simulator) is used to predict the results of MSW gasification and to provide some process fundamentals concerning syngas production from MSW gasification. The effects of gasification temperature, air equivalence ratio and moisture concentration on the composition of syngas, lower heating value (LHV) of syngas, heat conversion efficiency, and carbon conversion are discussed. The results indicate that higher temperature improves gasification, and higher air equivalence ratio increases the carbon conversion while decreasing syngas LHV. Heat conversion efficiency increases and reaches the maximum and then decreases with the increase of air equivalence ratio. Higher moisture concentration increases the carbon conversion and increases the heat conversion efficiency at lower ratios. Higher temperature and a lower equivalence ratio are favorable for obtaining a higher LHV of syngas at the same moisture concentration.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    27
    References
    28
    Citations
    NaN
    KQI
    []