Performance and mechanism of polypeptidylated hemoglobin (Hb)/iron oxide magnetic composites for enhanced dye removal

2020 
Abstract Composites of polypeptidylated hemoglobin supported on different iron oxide weights (0.5:1 and 1:1) were developed and demonstrated to function as efficient adsorbents for Eriochrome black-T dye removal. The synthesis of these adsorbents were performed through N-carboxyanhydride (NCA) polymerization at low temperature (4 °C) and near-neutral pH for 24 h followed by chemical co-precipitation. The synthesized adsorbents were found to exhibit BET surface area (54–87 m2/g), pore volume (0.30–0.35 cm3/g), average pore diameter (160–218 A) and average pore width (136–171 A). The developed adsorbents were tested in a batch dye adsorption system. Adsorption was found to follow pseudo-second order kinetics and the Langmuir adsorption capacities were 123, 204 and 217 mg/g for Fe3O4, 0.5:1 and 1:1 adsorbent samples, respectively. Chemical regeneration was successfully carried out using methanol and the reusability of the adsorbents were demonstrated with a decrease in adsorption capacities from ∼49 to ∼33 mg/g after the fourth reuse.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    25
    References
    4
    Citations
    NaN
    KQI
    []