Saws, Scissors, and Sharks: Late Paleozoic Experimentation with Symphyseal Dentition

2018 
Sharks of Late Paleozoic oceans evolved unique dentitions for catching and eating soft bodied prey. A diverse but poorly preserved clade, edestoids are noted for developing biting teeth at the midline of their jaws. Helicoprion has a continuously growing root to accommodate >100 crowns that spiraled on top of one another to form a symphyseal whorl supported and laterally braced within the lower jaw. Reconstruction of jaw mechanics shows that individual serrated crowns grasped, sliced, and pulled prey items into the esophagus. A new description and interpretation of Edestus provides insight into the anatomy and functional morphology of another specialized edestoid. Edestus has opposing curved blades of teeth that are segmented and shed with growth of the animal. Set on a long jaw the lower blade closes with a posterior motion, effectively slicing prey across multiple opposing serrated crowns. Further examples of symphyseal whorls among Edestoidae are provided from previously undescribed North American examples of Toxoprion, Campyloprion, Agassizodus, and Sinohelicoprion. The symphyseal dentition in edestoids is associated with a rigid jaw suspension and may have arisen in response to an increase in pelagic cephalopod prey during the Late Paleozoic. Anat Rec, 2018. (c) 2018 Wiley Periodicals, Inc. Anat Rec, 303:363-376, 2020. (c) 2018 American Association for Anatomy.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    28
    References
    3
    Citations
    NaN
    KQI
    []