Acoustic signals generated in inclined granular flows

2015 
Spontaneous avalanching in specific deserts produces a low-frequency sound known as “booming.” This creates a puzzle, because avalanches down the face of a dune result in collisions between sand grains that occur at much higher frequencies. Reproducing this phenomenon in the laboratory permits a better understanding of the underlying mechanisms for the generation of such lower frequency acoustic emissions, which may also be relevant to other dry granular flows. Here we report measurements of low-frequency acoustical signals, produced by dried “sounding” sand (sand capable of booming in the desert) flowing down an inclined chute. The amplitude of the signal diminishes over time but reappears upon drying of the sand. We show that the presence of this sound in the experiments may provide supporting evidence for a previously published “waveguide” explanation for booming. Also, we propose a model based on kinetic theory for a sheared inclined flow in which the flowing layer exhibits “breathing” modes superimposed on steady shearing. The predicted oscillation frequency is of a similar order of magnitude as the measurements, indicating that small perturbations can sustain oscillations of a low frequency. However, the frequency is underestimated, which indicates that the stiffness has been underestimated. Also, the model predicts a discrete spectrum of frequencies, instead of the broadband spectrum measured experimentally.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    31
    References
    0
    Citations
    NaN
    KQI
    []