Highly stable charge generation layers using caesium phosphate as n-dopants and inserting interlayers

2012 
Highly stable and efficient charge generation layers (CGLs) comprising caesium phosphate (Cs3PO4) doped 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline (BCP) as n-type organic semiconductor and molybdenum trioxide (MoO3) doped N,N′-di-(naphthalen-1-yl)-N,N′-diphenyl-benzidine (α-NPD) as p-type organic semiconductor, respectively, are presented. By inserting narrow-gap organic copper-phthalocyanine (CuPc) and wide-gap insulating aluminum oxide (Al2O3) as interlayer (IL), we show that the long-term stability of the CGL can be improved. The variation of the CuPc IL thickness yields an optimum of 8 nm as a trade-off between minimal operating voltage and maximum voltage stability of the CGL. Luminance-current density-voltage characteristics and lifetime measurements of stacked green organic light emitting diodes (OLEDs) confirm the functionality and high voltage stability of the presented CGL. The luminous efficacy of the stacked OLED compared to the non-stacked reference device is nearly unchanged. However, the...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    30
    References
    16
    Citations
    NaN
    KQI
    []