Biodegradation of an essential oil UVCB - whole substance testing and constituent specific analytics yield biodegradation kinetics of mixture constituents

2021 
Abstract Testing and assessing the persistency, bioaccumulative and toxic properties of UVCBs (substances of Unknown or Variable composition, Complex reaction products or Biological materials) pose major technical and analytical challenges. The main aim of this study was to combine whole substance biodegradation testing with constituent specific analytics for determining primary biodegradation kinetics of the main UVCB constituents. An additional aim was to link the primary biodegradation kinetics of the main constituents to the bioaccumulation potential and baseline toxicity potential of the UVCB. Two closed biodegradation experiments were conducted using similar test systems but different analyses. The model substance, cedarwood Virginia oil, was tested at a low concentration and wastewater treatment plant effluent served as inoculum. We used microvolume solvent spiking for a quantitative mass transfer of the UVCB, while avoiding that co-solvent degradation would lead to anaerobic conditions. The biodegradation of UVCB constituents was determined with automated solid-phase microextraction coupled to GC-MS/MS using targeted analysis for main constituents and non-targeted analysis for minor constituents and non-polar degradation products. Primary biodegradation kinetics of main constituents, accounting for 73% w/w of the mixture, were successfully determined with degradation rate constants ranging from 0.09 to 0.25 d−1. Minor constituents were also degraded and non-polar degradation products were not observed. Finally, the bioaccumulation potential and baseline toxicity potential of the mixture at test start were calculated and both parameters decreased then substantially. The strength of the new approach is the possibility of biodegradation testing of a whole UVCB at low concentration while generating constituent specific biodegradation kinetics.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    20
    References
    0
    Citations
    NaN
    KQI
    []