High-resolution model building with multistage full-waveform inversion for narrow-azimuth acquisition data

2016 
Full-waveform inversion (FWI) is an attractive tool for high-resolution velocity-model building without a high-frequency assumption compared to conventional reflection tomography. However, there are two main challenges to the application of FWI on narrow-azimuth acquisition (NAZ) data: cycle skipping and acquisition footprints. Here, a multistage FWI is proposed to build a high-resolution model for NAZ data. It is well known that FWI may suffer from a cycle-skipping problem when the starting model is not close enough to the true solution. To mitigate this problem, we introduce dynamic-warping preconditioned full-waveform inversion (DWFWI) as the first stage of the velocity inversion. DWFWI iteratively preconditions the observed early arrivals through dynamic warping to avoid cycle skipping in the model, which allows large-scale background updates. The second stage of our workflow is the conventional FWI with image-guided smoothing (IGFWI). On top of DWFWI, more reflection events are included and inverted ...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    16
    References
    13
    Citations
    NaN
    KQI
    []