α-decay spectroscopy of the N=130 isotones Ra218 and Th220: Mitigation of α-particle energy summing with implanted nuclei

2019 
© 2019 American Physical Society. An analysis technique has been developed in order to mitigate energy summing due to sequential short-lived α decays from nuclei implanted into a silicon detector. Using this technique, α-decay spectroscopy of the N=130 isotones Ra218 (Z=88) and Th220 (Z=90) has been performed. The energies of the α particles emitted in the Ra218→Rn214 and Th220→Ra216 ground-state-to-ground-state decays have been measured to be 8381(4) keV and 8818(13) keV, respectively. The half-lives of the ground states of Ra218 and Th220 have been measured to be 25.99(10) μs and 10.4(4) μs, respectively. The half-lives of the ground states of the α-decay daughters, Rn214 and Ra216, have been measured to be 259(3) ns and 161(11) ns, respectively. Fine structure in the α decay of Ra218 has been observed for the first time, populating the 695-keV 21+ state in Rn214. The fine-structure α decay has an α-particle energy of 7715(40) keV and branching ratio bα=0.123(11)%.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    43
    References
    3
    Citations
    NaN
    KQI
    []