A carbonate-free, sulfone-based electrolyte for high-voltage Li-ion batteries

2018 
Abstract Practical implementation of next-generation Li-ion battery chemistries is to a large extent obstructed by the absence of an electrolyte that is capable of simultaneously supporting reversible electrochemical reactions at two extreme electrochemical potentials—above 4.5 V at the positive electrode and near 0 V vs. Li at the negative electrode. Electrolytes based on carbonate esters have been reliable in satisfying state-of-the-art Li-ion battery (LIB) chemistries below 4.4 V), releasing CO 2 . In this work, we explore a carbonate-free electrolyte system based on a single sulfone solvent, in which a newly discovered synergy between solvent and salt simultaneously addresses the interfacial requirements of both graphitic anode and high-voltage cathode (LiNi 0.5 Mn 1.5 O 4 (LNMO)). Experimental measurements, quantum chemistry (QC) calculations, and molecular dynamics simulations reveal the system’s fast ion conduction, stability over a wide temperature range, and non-flammability. At the anode, a LiF-rich interphase generated by early-onset reduction of the salt anion effectively suppresses solvent co-intercalation and subsequent graphite exfoliation, enabling unprecedented and highly reversible graphite cycling in a pure sulfone system. Under oxidative conditions, QC calculations predict that high salt concentration promotes complex/aggregate formation which slow the decomposition of sulfolane and leads to polymerizable rather than gaseous products—a fundamental improvement over carbonate solvents. These predictions are corroborated by X-ray photoelectron spectroscopy (XPS), cryogenic-transmission electron microscopy (TEM), and electron energy loss spectroscopy (EELS) experiments, which revealed the presence of a thin, conformal, sulfur-based cathode electrolyte interphase (CEI). Together, the functional interphases (SEI/CEI) generated by this electrolyte system supported long term operation of a high-voltage (4.85 V) LNMO/graphite full cell, which retained ∼70% of its original first-cycle discharge capacity after the 1000th cycle. Based on these results, this new carbonate-free electrolyte system, supported by the mechanistic understanding of its behavior, presents a promising new direction toward unlocking the potential of next generation Li-ion battery electrodes.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    80
    References
    133
    Citations
    NaN
    KQI
    []