MOVPE growth and transport characterization of Bi 2−x Sb x Te 3−y Se y films

2018 
Abstract We present a first study of films of the quaternary Bi 2− x Sb x Te 3− y Se y solid solutions on (0 0 0 1) sapphire substrates grown by atmospheric pressure MOVPE. Trimethylbismuth, trimethylantimony, diisopropylselenide and diethyltelluride were used as precursors. To passivate the free bonds of the substrate and to improve the epitaxy, a thin (15 nm) ZnTe buffer layer was first grown. EDX analysis of the films grown at a temperature of 445 °C and about 10-fold excess of chalcogen in the vapor phase indicates on their compliance with V 2 VI 3 stoichiometry. AFM and SEM investigations showed that at the initial stage of deposition the Stranski-Krastanov growth mode is dominant. Complete coalescence of nanoislands occurs at a thickness about 60 nm and further film formation is in the 2D layer-by-layer growth mode. A high mole fraction of antimony in the vapor phase leads to bad crystalline quality of the films and even to their discontinuity. Transport properties of the Bi 2− x Sb x Te 3− y Se y films were evaluated using Van der Pauw Hall effect measurements in the range of temperatures of 10–300 K. Some films are always n- or p-type; in other samples the change of conductivity from p- to n-type was observed when the temperature decreases.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    29
    References
    6
    Citations
    NaN
    KQI
    []