language-icon Old Web
English
Sign In

Adaptive Reticulum

2019 
Neural Networks and Decision Trees: two popular techniques for supervised learning that are seemingly disconnected in their formulation and optimization method, have recently been combined in a single construct. The connection pivots on assembling an artificial Neural Network with nodes that allow for a gate-like function to mimic a tree split, optimized using the standard approach of recursively applying the chain rule to update its parameters. Yet two main challenges have impeded wide use of this hybrid approach: (a) the inability of global gradient ascent techniques to optimize hierarchical parameters (as introduced by the gate function); and (b) the construction of the tree structure, which has relied on standard decision tree algorithms to learn the network topology or incrementally (and heuristically) searching the space at random. Here we propose a probabilistic construct that exploits the idea of a node's unexplained potential (the total error channeled through the node) in order to decide where to expand further, mimicking the standard tree construction in a Neural Network setting, alongside a modified gradient ascent that first locally optimizes an expanded node before a global optimization. The probabilistic approach allows us to evaluate each new split as a ratio of likelihoods that balances the statistical improvement in explaining the evidence against the additional model complexity --- thus providing a natural stopping condition. The result is a novel classification and regression technique that leverages the strength of both: a tree-structure that grows naturally and is simple to interpret with the plasticity of Neural Networks that allow for soft margins and slanted boundaries.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []