Computational modeling of proton acceleration with multi-picosecond and high energy, kilojoule, lasers

2018 
We use computational modeling to investigate proton beam generation from kilojoule, multi-picosecond laser pulses pertinent to several recently commissioned, large-scale laser facilities. The dependencies of proton acceleration on electron source parameters including pulse duration, temperature, and flux are independently and systematically evaluated. Proton acceleration is found to depend not only on the source size and peak temperature of the injected electrons but also on the rate of increase for a more physical time-varying temperature. Simulations of a 10 ps, sub-relativistic intensity (8 × 1017 W/cm2) at 1 μm wavelength laser pulse show that energetic electrons generated within the expanding under-dense laser-produced plasma sustain the proton acceleration for ∼20 ps. This results in 15 MeV energy gain of the protons, well above what would be predicted based on conventional intensity scalings or what has been observed with shorter pulses. Using this prolonged acceleration, a scheme consisting of a 1...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    46
    References
    17
    Citations
    NaN
    KQI
    []