The trans-cis isomerization reaction dynamics in sensory rhodopsin II by femtosecond time-resolved midinfrared spectroscopy: chromophore and protein dynamics.

2006 
Transient infrared (IR) vibrational spectroscopy at subpicosecond time resolution on sensory rhodopsin II from Natronomonas pharaonis, NpSRII, has been performed for the first time. The experiments yield three time constants for the description of the primary photoinduced reaction dynamics, i.e. 0.5, 3.7–4.4, and 11 ps. The data are consistent with a sequential reaction scheme, with the isomerization taking place within 0.5 ps, succeeded by an electronic ground state relaxation. The 11 ps component, observed at 1550 and 1530 cm−1, is attributed to dynamics of protein vibrational bands, possibly amide II bands of the protein backbone, perturbed by the ultrafast retinal photoisomerization. Similar observations, yet not as strongly expressed, have been made earlier in bacteriorhodopsin and halorhodopsin. © 2006 Wiley Periodicals, Inc. Biopolymers 82: 358–362, 2006 This article was originally published online as an accepted preprint. The “Published Online” date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers editorial office at biopolymers@wiley.com
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    16
    References
    15
    Citations
    NaN
    KQI
    []