A multicenter analysis of the prognostic value of histone H3 K27M mutation in adult high-grade spinal glioma.
2021
OBJECTIVE High-grade spinal glioma (HGSG) is a rare but aggressive tumor that occurs in both adults and children. Histone H3 K27M mutation correlates with poor prognosis in children with diffuse midline glioma. However, the role of H3 K27M mutation in the prognosis of adults with HGSG remains unclear owing to the rarity of this mutation, conflicting reports, and the absence of multicenter studies on this topic. METHODS The authors studied a cohort of 30 adult patients with diffuse HGSG who underwent histological confirmation of diagnosis, surgical intervention, and treatment between January 2000 and July 2020 at six tertiary academic centers. The primary outcome was the effect of H3 K27M mutation status on progression-free survival (PFS) and overall survival (OS). RESULTS Thirty patients (18 males and 12 females) with a median (range) age of 50.5 (19-76) years were included in the analysis. Eighteen patients had H3 K27M mutation-positive tumors, and 12 had H3 K27M mutation-negative tumors. The median (interquartile range) PFS was 3 (10) months, and the median (interquartile range) OS was 9 (23) months. The factors associated with increased survival were treatment with concurrent chemotherapy/radiation (p = 0.006 for PFS, and p ≤ 0.001 for OS) and American Spinal Injury Association grade C or better at presentation (p = 0.043 for PFS, and p < 0.001 for OS). There were no significant differences in outcomes based on tumor location, extent of resection, sex, or H3 K27M mutation status. Analysis restricted to HGSG containing necrosis and/or microvascular proliferation (WHO grade IV histological features) revealed increased OS for patients with H3 K27M mutation-positive tumors (p = 0.017). CONCLUSIONS Although H3 K27M mutant-positive HGSG was associated with poor outcomes in adult patients, the outcomes of patients with H3 K27M mutant-positive HGSG were somewhat more favorable compared with those of their H3 K27M mutant-negative HGSG counterparts. Further preclinical animal studies and larger clinical studies are needed to further understand the age-dependent effects of H3 K27M mutation.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
38
References
1
Citations
NaN
KQI