Charge carrier injection electroluminescence with CO functionalized tips on single molecular emitters.

2019 
We investigate electroluminescence of single molecular emitters on NaCl on Ag(111) and Au(111) with submolecular resolution in a low-temperature scanning probe microscope with tunneling current, atomic force and light detection capabilities. Role of the tip state is studied in the photon maps of a prototypical emitter, zinc phthalocyanine (ZnPc), using metal and CO-metal tips. CO-functionalization is found to have a dramatic impact on the resolution and contrast of the photon maps due to the localized overlap of the p-orbitals on the tip with the molecular orbitals of the emitter. The possibility of using the same CO-functionalized tip for tip-enhanced photon detection and high resolution atomic force is demonstrated. We study the electroluminescence of ZnPc, induced by charge carrier injection at sufficiently high bias voltages. We propose that the distinct level alignment of the ZnPc frontier orbital with the Au(111) and Ag(111) Fermi levels governs the primary excitation mechanisms as the injection of electrons and holes from the tip into the molecule, respectively. These findings put forward the importance of the tip status in the photon maps and contribute to a better understanding of the photophysics of organic molecules on surfaces.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    28
    References
    0
    Citations
    NaN
    KQI
    []