Dual-Carbon Coupled Co5.47N Composites for Capacitive Lithium-Ion Storage
2020
Abstract Transition metal nitrides are of great interest as potential anodes for lithium-ion batteries (LIBs) owing to their high theoretical capacity. However, poor cycling stability and rate performance greatly hinder their practical applications. To better alleviate these problems, a unique 3D hierarchical nanocomposite constructed by dual carbon-coated Co5.47N nano-grains wrapped with carbon and reduced graphene oxide (Co5.47N@C@rGO) was synthesized through one-step simultaneous nitridation and carbonization of zeolitic imidazolate frameworks@GO precursor. The 3D hierarchical Co5.47N@C@rGO composite can combine the good conductivity and mechanical strength of rGO and a high theoretical capacity of Co5.47N. When explored as anode material for LIBs, Co5.47N@C@rGO exhibits a high reversible capacity of ∼860 mAh g−1 at a current density of 1.0 A g−1 after 500 cycles and excellent high-rate capability (665 and 573 mAh g−1 at current densities of 3.2 and 6.4 A g−1, respectively). The excellent electrochemical performance of Co5.47N@C@rGO can be ascribed to its hierarchically porous structure and the synergistic effect between Co5.47N nano-grains and rGO.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
63
References
1
Citations
NaN
KQI