Ab initio electron-defect interactions using Wannier functions

2019 
Computing electron-defect (e-d) interactions from first principles has remained impractical due to computational cost. Here we develop an interpolation scheme based on maximally localized Wannier functions (WFs) to efficiently compute e-d interaction matrix elements. The interpolated matrix elements can accurately reproduce those computed directly without interpolation, and the approach can significantly speed up calculations of e-d relaxation times and defect-limited charge transport. We show example calculations of vacancy defects in silicon and copper, for which we compute the e-d relaxation times on fine uniform and random Brillouin zone grids (and for copper, directly on the Fermi surface) as well as the defect-limited resistivity at low temperature. Our interpolation approach opens doors for atomistic calculations of charge carrier dynamics in the presence of defects.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    45
    References
    1
    Citations
    NaN
    KQI
    []