Reconstruction of in-vivo subthreshold activity of single neurons from large-scale spiking recordings

2019 
Current developments in the manufacturing of silicon probes allow recording of spikes from large populations of neurons from several brain structures in freely moving animals. It is still, however, technically challenging to record the membrane potential from awake behaving animals. Routine access to the subthreshold activity of neurons would be of great value in order to understand the role of, for example, neuronal integration, oscillations, and excitability. Here we have developed a framework for reconstructing the subthreshold activity of single neurons using the spiking activity from large neuronal populations. The reconstruction accuracy and reliability have been evaluated with ground truth data provided from simultaneous patch clamp membrane potential recordings in-vivo. Given the abundance of large-scale spike recordings in the contemporary systems neuroscience society, this approach provides a general access to the subthreshold activity and hence could shed light on the intricate mechanisms of the genesis of spiking activity.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    62
    References
    3
    Citations
    NaN
    KQI
    []