Assessing spring phenology of a temperate woodland: A multiscale comparison of ground, unmanned aerial vehicle and Landsat satellite observations

2019 
Abstract The monitoring of forest phenology in a cost-effective manner, at a fine spatial scale and over relatively large areas remains a significant challenge. To address this issue, unmanned aerial vehicles (UAVs) appear to be a potential new platform for forest phenology monitoring. This article assesses the potential of UAV data to track the temporal dynamics of spring phenology, from the individual tree to woodland scale, and cross-compare UAV results against ground and satellite observations, in order to better understand characteristics of UAV data and assess potential for use in validation of satellite-derived phenology. A time series of UAV data (5 cm spatial resolution, ~7 day temporal resolution) were acquired in tandem with an intensive ground campaign during the spring season of 2015 across a 15 ha mixed woodland. Phenophase transition dates were estimated at an individual tree-level using UAV time series of Normalized Difference Vegetation Index (NDVI) and Green Chromatic Coordinate (GCC) and validated against visual observations of tree phenology. UAV-derived start of season dates could be predicted with an accuracy of 2
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    105
    References
    45
    Citations
    NaN
    KQI
    []