Efficient removal of hexavalent chromium and lead from aqueous solutions by s-triazine containing nanoporous polyamide

2017 
s-Triazine containing dicarboxylic acid was synthesized. Then, it was reacted with 1,3-phenylenediamine in molten tetrabutylammonium bromide to formed soluble aromatic polyamide with good yield and moderate inherent viscosity of 0.35 dL g−1. The solubility and flexibility of polyamides are low. So, we used ether group such as di(4-aminephenyl) ether in building polyamide. The structure of monomer and polymer was confirmed by Fourier transform infrared spectroscopy, elemental analysis, and proton nuclear magnetic resonance techniques. Thermogravimetric analysis was used to evaluate the thermal properties of synthesized polyamide, and their results show that this polymer had a good thermal stability. The surface morphology of s-triazine containing polyamide was studied by field emission-scanning electron microscopy and transmission electron microscopy, and the results show that it has a porous morphology and moderate Brunauer–Emmett–Teller specific surface (367 m2 g−1). It was further investigated for Pb (II) and Cr(VI) ion removal by optimizing the parameters including pH and contact time. The maximum uptakes of Pb(II) and Cr(VI) at pH 5.0 and pH 4.0 are 57% and 76%, respectively. Also, sorption kinetics of this polymer was investigated. Copyright © 2017 John Wiley & Sons, Ltd.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    35
    References
    8
    Citations
    NaN
    KQI
    []