Built-in electric field control of magnetic coupling in van der Waals semiconductors

2021 
Electrical control of magnetism in a two-dimensional (2D) semiconductor is of great interest for emerging nanoscale low-dissipation spintronic devices. Here, we propose a general approach of tuning magnetic coupling and anisotropy of a van der Waals (vdW) 2D magnetic semiconductor via a built-in electric field generated by the adsorption of superatomic ions. Using first-principles calculations, we predict a significant enhancement of ferromagnetic coupling and a great change of magnetic anisotropy in 2D semiconductors when they are sandwiched between superatomic cations and anions. The magnetic coupling is directly affected by the built-in electric field, which lifts the energy levels of mediated ligands' orbitals and enhances the superexchange interactions. These findings will be of interest for ionic gating controlled ferromagnets and magnetoelectronics based on vdW 2D semiconductors.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    51
    References
    0
    Citations
    NaN
    KQI
    []